Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 546

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Technology information on High Temperature Gas-cooled Reactor (HTGR)

HTGR Design Group, HTGR Project Management Office

JAEA-Technology 2023-019, 39 Pages, 2024/01

JAEA-Technology-2023-019.pdf:1.34MB

In order to realize the development of the demonstration reactor of High Temperature Gas-cooled Reactor (HTGR) with a target of starting operation in the 2030s, as indicated in the "Basic Policy for GX Realization" (Cabinet Decision on February 10, 2023) and the Working Group on Innovative Reactors of METI, Japan Atomic Energy Agency (JAEA) has been working on the development of a standard for the development of a HTGR under the Atomic Energy Society of Japan and the Japan Society of Mechanical Engineers. In addition, JAEA has been commissioned by the Agency for Natural Resources and Energy of the Ministry of Economy, Trade and Industry (METI) to conduct the "Demonstration Project for Mass Hydrogen Production Technology Using Ultra-High Temperatures" and has been promoting a hydrogen production project using the HTTR (High Temperature Engineering Test Reactor). Furthermore, in collaboration with the National Nuclear Laboratory (NNL) of the United Kingdom and the National Centre for Nuclear Research (NCBJ) of Poland, JAEA are aiming to strengthen the international competitiveness of HTGR technology by further upgrading the HTGR technology developed in Japan through the construction and operation of the HTTR. In response to the growing interest in HTGR development in Japan and abroad, we have developed FAQs on HTGR related technologies in order to provide accurate technical information on HTGRs.

Journal Articles

Development of an RPV cooling system for HTGRs

Takamatsu, Kuniyoshi

Kakushinteki Reikyaku Gijutsu; Mekanizumu Kara Soshi, Shisutemu Kaihatsu Made, p.179 - 183, 2024/01

The HTGR has excellent safety, and even in the event of an accident where the reactor coolant is lost, the decay heat and residual heat in the core can be dissipated from the outer surface of the RPV, so the fuel temperature never exceeds the limit value, and the core stabilizes. On the other hand, regarding the cooling system that transports the heat emitted from the RPV to the final heat sink, an active cooling system using forced circulation of water by a pump, etc., and a passive cooling system using natural circulation of the atmosphere have been proposed. However, there is a problem that the cooling performance is affected by the operation of dynamic equipment and weather conditions. This paper presents an overview of a new cooling system concept using radiative cooling, which has been proposed to solve the above problem, and introduces the results of analysis and experiments aimed at confirming the feasibility of this concept.

Journal Articles

Fuel cycle scenarios and back-end technologies of HTGR in Japan

Fukaya, Yuji; Goto, Minoru; Shibata, Taiju

IAEA-TECDOC-2040, p.133 - 136, 2023/12

Japan has developed back-end technologies to establish a multi-recycling fuel cycle with fast breeder reactors (FBRs) to ensure energy resources. Even though the development of FBR has been retreated to one of fundamental research, the reprocessing technologies for uranium fuel and disposal technologies had been completed for Light Water Reactor (LWR) fuel cycle on the process. These technologies were inherited to utilities and are about to be practical. Now, Japan had been completed High Temperature Engineering Test Reactor (HTTR) a prototype and research reactor, a commercial High Temperature Gas-cooled Reactor (HTGR) design Gas Turbine High Temperature Reactor 300 (GTHTR300) with related reprocessing technologies, and is planning domestic demonstration reactor project. In this context, a representative fuel cycle policy is reprocessing in Japan. However, Japan has investigated various fuel cycle scenarios to expand the usage of the commercial HTGR. Then, we would like to introduce the scenarios and development status of related technologies in the present study.

Journal Articles

R&D progress of thermochemical hydrogen production iodine-sulfur process in JAEA

Kubo, Shinji

Nihon Enerugi Gakkai Kikan-Shi Enerumikusu, 102(4), p.428 - 438, 2023/07

no abstracts in English

JAEA Reports

Study on disposal of waste from reprocessing for commercial HTGR spent fuel

Fukaya, Yuji; Maruyama, Takahiro; Goto, Minoru; Ohashi, Hirofumi; Higuchi, Hideaki

JAEA-Research 2023-002, 19 Pages, 2023/06

JAEA-Research-2023-002.pdf:1.48MB

A study on disposal of waste derived from commercial High Temperature Gas-cooled Reactor ("HTGR") has been performed. Because of significant difference between the reprocessing of Light Water Reactor ("LWR") and that of HTGR due to difference in structures of the fuel, adoptability of the laws relating to reprocessing waste disposal, which is enacted for LWR, to HTGR waste should be confirmed. Then, we compared the technologies and waste of reprocessing and evaluated radioactivity concentration in graphite waste by activation and contamination based on whole core burn-up calculation. As a result, it was found that SiC residue waste should be disposed of into a geological repository as 2nd class designated radioactive waste in the Designated Radioactive Waste Final Disposal Act (Act No.117 of 2000), by way of amendment of the applicable order, same as hull and end-piece of LWR, and graphite waste should be shallowly disposed of than geological disposal as 2nd class waste for pit disposal in the Act on the Regulation of Nuclear Source Material, Nuclear Fuel Material and Reactors (Act No.166 of 1957) same as a channel box of LWR.

Journal Articles

Current status and prospects of technology development for hydrogen production using high temperature gas-cooled reactor

Kubo, Shinji

Suiso Enerugi Shisutemu, 48(2), p.126 - 132, 2023/06

no abstracts in English

Journal Articles

Improvement of cooling performance of reactor pressure vessel using passive cooling

Banno, Masaki*; Funatani, Shumpei*; Takamatsu, Kuniyoshi

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 7 Pages, 2023/05

A fundamental study on the safety of a passive cooling system for the RPV with radiative cooling is conducted. The object of this study is to demonstrate that passive RPV cooling system with radiative cooling is extremely safe and reliable even in the event of natural disasters. Therefore, an experimental apparatus, which is about 1/20 scale of the actual cooling system, was fabricated with several stainless steel containers. The surface of the heating element in the experimental apparatus simulates the surface of the RPV, and the heating element generates natural convection and radiation. A comparison of the Grashof number between the actual cooling system and the experimental apparatus confirmed that both were turbulent, and the experimental results as a scale model are valuable. Moreover, the experimental results confirmed that the heat generated from the surface of the RPV during the rated operation can be removed.

Journal Articles

Feasibility study on reprocessing of HTGR spent fuel by existing PUREX plant and technology

Fukaya, Yuji; Goto, Minoru; Ohashi, Hirofumi

Annals of Nuclear Energy, 181, p.109534_1 - 109534_10, 2023/02

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Feasibility of reprocessing of High Temperature Gas-cooled Reactor (HTGR) spent fuel by existing Plutonium Uranium Redox EXtraction (PUREX) plant and technology has been investigated. The spent fuel dissolved solution includes approximately 3 times amount of uranium-235 and 1.5 times amount of protonium because of the 3 times higher burnup compared with that of Light Water Reactor (LWR). Then, the heavy metal of the spent fuel is planned to be diluted to 3.1 times by depleted uranium to satisfy the limitation of Rokkasho Reprocessing Plant (RRP) plant. In the present study, recoverability of uranium and plutonium with the dilution is confirmed by a simulation with a reprocessing process calculation code. Moreover, the case without the dilution from the economic perspective is investigated. As a result, the feasibility is confirmed without the dilution, and it is expected that the reprocessed amount is reduced to 1/3 compared with a diluted case even though the facility should be optimized from the perspective of mass flow and criticality.

Journal Articles

Study on evaluation method of kernel migration of TRISO fuel for High Temperature Gas-cooled Reactor

Fukaya, Yuji; Okita, Shoichiro; Sasaki, Koei; Ueta, Shohei; Goto, Minoru; Ohashi, Hirofumi; Yan, X.

Nuclear Engineering and Design, 399, p.112033_1 - 112033_9, 2022/12

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Kernel migration of TRi-structural ISOtropic (TRISO) fuel for High Temperature Gas-cooled Reactor (HTGR) has been analyzed to investigate the potential dominating effects. Kernel migration is a major fuel failure mode and dominant to determine the lifetime of the fuel for High Temperature engineering Test Reactor (HTTR). However, this study shows that the result and reliability depend on the evaluation method. The evaluation method used in this study takes into account of actual distribution of Coated Fuel Particles (CFPs) and the resulting heterogeneous fuel temperature calculation with such distribution. The result shows that the Kernel Migration Rate (KMR) is predicted to be about 10% less compared with the most conservative evaluation.

Journal Articles

Study on heat transfer characteristics of reactor cavity cooling system using radiation

Banno, Masaki*; Funatani, Shumpei*; Takamatsu, Kuniyoshi

Yamanashi Koenkai 2022 Koen Rombunshu (CD-ROM), 6 Pages, 2022/10

A fundamental study on the safety of a passive cooling system for the reactor pressure vessel (RPV) with radiative cooling is conducted. The object of this study is to demonstrate that passive RPV cooling system with radiative cooling is extremely safe and reliable even in the event of natural disasters. Therefore, an experimental apparatus, which is about 1/20 scale of the actual cooling system, was fabricated with several stainless steel containers. The surface of the heating element in the experimental apparatus simulates the surface of the RPV, and the heating element generates natural convection and radiation. As a result of the experiments, we succeeded in visualizing the natural convection in the experimental apparatus in detail.

JAEA Reports

Document collection of the Special Committee on HTTR Heat Application Test

Aoki, Takeshi; Shimizu, Atsushi; Iigaki, Kazuhiko; Okita, Shoichiro; Hasegawa, Takeshi; Mizuta, Naoki; Sato, Hiroyuki; Sakaba, Nariaki

JAEA-Review 2022-016, 193 Pages, 2022/08

JAEA-Review-2022-016.pdf:42.06MB

Aiming to realize a massive, cost-effective and carbon-free hydrogen production technology utilizing a high temperature gas cooled reactor (HTGR), Japan Atomic Energy Agency (JAEA) is planning a HTTR heat application test producing hydrogen with High Temperature Engineering Test Reactor (HTTR) achieved 950$$^{circ}$$C of the highest reactor outlet coolant temperature in the world. In the HTTR heat application test, it is required to establish its safety design realizing highly safe connection of a HTGR and a hydrogen production plant by the Nuclear Regulation Authority to obtain the permission of changes to reactor installation. However, installation of a system connecting the hydrogen production plant and a nuclear reactor, and its safety design has not been conducted so far in conventional nuclear power plant including HTTR in the world. A special committee on the HTTR heat application test, established under the HTGR Research and Development Center, considered a safety design philosophy for the HTTR heat application test based on an authorized safety design of HTTR in terms of conformity to the New Regulatory Requirements taking into account new considerable events as a result of the plant modification and connection of the hydrogen production plant. This report provides materials of the special committee such as technical reports, comments provided from committee members, response from JAEA for the comments and minutes of the committee.

Journal Articles

A Statistical approach for modelling the effect of hot press conditions on the mechanical strength properties of HTGR fuel elements

Aihara, Jun; Kuroda, Masatoshi*; Tachibana, Yukio

Mechanical Engineering Journal (Internet), 9(4), p.21-00424_1 - 21-00424_13, 2022/08

It is important to improve oxidation resistance of fuel for huge oxygen ingress into core to improve safety of high temperature gas-cooled reactors (HTGRs), because almost volume of cores of HTGRs consist of graphite. In this study, simulated oxidation resistant fuel elements, of which matrix is mixture of SiC and graphite, has been fabricated by hot press method. In order to maintain structural integrity of fuel element under accident conditions, high-strength fuel elements should be developed. In order to identify optimal hot press conditions for preparing high-strength fuel elements, effect of hot press conditions on mechanical strength properties of fuel elements should be evaluated quantitatively. In the present study, response surface model, which represents relationship between hot press conditions and mechanical strength properties, has been constructed by introducing statistical design of experiments (DOE) approaches, and optimal hot press conditions were estimated by model.

JAEA Reports

Safety design philosophy of HTTR Heat Application Test Facility

Aoki, Takeshi; Shimizu, Atsushi; Iigaki, Kazuhiko; Okita, Shoichiro; Hasegawa, Takeshi; Mizuta, Naoki; Sato, Hiroyuki; Sakaba, Nariaki

JAEA-Technology 2022-011, 60 Pages, 2022/07

JAEA-Technology-2022-011.pdf:2.08MB

Japan Atomic Energy Agency is planning a High Temperature Engineering Test Reactor (HTTR) heat application test producing hydrogen with the HTTR which achieved the highest reactor outlet coolant temperature of 950$$^{circ}$$C in the world to realize a massive, cost-effective and carbon-free hydrogen production technology utilizing a high temperature gas cooled reactor (HTGR). In the HTTR heat application test, it is required to establish its safety design for coupling a hydrogen production plant to HTGR through the licensing by the Nuclear Regulation Authority (NRA). A draft of a safety design philosophy for the HTTR heat application test facility was considered taking into account postulated events due to the plant modification and coupling of the hydrogen production plant based on the HTTR safety design which was authorized through the safety review of the NRA against New Regulatory Requirements. The safety design philosophy was examined to apply proven conventional chemical plant standards to the hydrogen production plant for ensuring public safety against disasters caused by high pressure gases. This report presents a result of a consideration on safety design philosophies regarding the reasonability and condition to apply the High Pressure Gas Safety Act for the hydrogen production plant, safety classifications, seismic design classification, identification of important safety system.

Journal Articles

Development trends of small modular reactors and approaches of Japan Atomic Energy Agency to advanced reactor development

Matsuba, Kenichi; Shinohara, Masanori; Toyooka, Junichi; Inaba, Yoshitomo; Sumita, Junya

Enerugi, Shigen, 43(4), p.218 - 223, 2022/07

In the global trend toward decarbonization, Japan has a policy to pursue all options, including nuclear power, to achieve carbon neutrality by 2050. In order to meet the public requirements for nuclear power, it is important to promote the development of advanced reactors, including the Small Modular Reactor (SMR), as one of the promising options. This article describes the domestic and international trends of SMR development, introduces the activities of Japan Atomic Energy Agency (JAEA) for the development of advanced reactors including SMRs, and concludes with the future prospect for the introduction of advanced reactor including SMRs in Japan.

Journal Articles

Re-evaluation of electricity generation cost of HTGR

Fukaya, Yuji; Ohashi, Hirofumi; Sato, Hiroyuki; Goto, Minoru; Kunitomi, Kazuhiko

Nihon Genshiryoku Gakkai Wabun Rombunshi (Internet), 21(2), p.116 - 126, 2022/06

An improvement electricity generation cost evaluation method for High Temperature Gas-cooled Reactors (HTGRs) has been performed. Japan Atomic Energy Agency (JAEA) had completed the commercial HTGR concept named Gas Turbine High Temperature Reactor (GTHTR300) and the electricity generation cost evaluation method approximately a decade ago. The cost evaluation was developed based on the method of Federation of Electric Power Companies (FEPC). The FEPC method was drastically revised after the Fukushima Daiichi nuclear disaster. Moreover, the escalation of material and labor cost for the decade should be consider to evaluate the latest cost. Therefore, we revised the cost evaluation method for GTHTR300 and the cost was compared with that of Light Water Reactor (LWR). As a result, it was found that the electricity generation cost of HTGR of 7.9 yen/kWh is cheaper than that of LWR of 11.7 yen/kWh by approximately 30% at the capacity factor of 70%.

Journal Articles

Computed tomography neutron detector system to observe power distribution in a core with long neutron flight path

Fukaya, Yuji; Okita, Shoichiro; Nakagawa, Shigeaki; Goto, Minoru; Ohashi, Hirofumi

Annals of Nuclear Energy, 168, p.108911_1 - 108911_7, 2022/04

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

A power distribution monitoring system by using a moving detector for a core with a long neutron flight path has been proposed. High Temperature Gas-cooled Reactor (HTGR) and Fast Reactor (FR) has a long neutron flight path and the neutrons reach to detector far from fuel assembly in the center of the core unlike Light Water Reactor (LWR). By using the feature, power distribution can be observed with a few detectors by moving the detector and computed tomography technology similar to X-ray Computed Tomography (CT). For a small-sized core, the power distribution can be evaluated only by an ex-core neutron detector. For a large-sized core with inner detectors, the power distribution can be observed with a small number of in-core detectors even if the deployment is limited due to material integrity conditions such as temperature environment. The feasibility is numerically confirmed by simulations of the HTGR core and its detector response. It is expected to observe the power distribution in the core of HTGR and FR, which is difficult continuously to deploy in-core detectors because of high temperature and/or high irradiation damage.

Journal Articles

Improving the safety of the high temperature gas-cooled reactor "HTTR" based on Japan's new regulatory requirements

Hamamoto, Shimpei; Shimizu, Atsushi; Inoi, Hiroyuki; Tochio, Daisuke; Homma, Fumitaka; Sawahata, Hiroaki; Sekita, Kenji; Watanabe, Shuji; Furusawa, Takayuki; Iigaki, Kazuhiko; et al.

Nuclear Engineering and Design, 388, p.111642_1 - 111642_11, 2022/03

 Times Cited Count:2 Percentile:53.91(Nuclear Science & Technology)

Following the Fukushima Daiichi Nuclear Power Plant accident in 2011, the Japan Atomic Energy Agency adapted High-Temperature engineering Test Reactor (HTTR) to meet the new regulatory requirements that began in December 2013. The safety and seismic classifications of the existing structures, systems, and components were discussed to reflect insights regarding High Temperature Gas-cooled Reactors (HTGRs) that were acquired through various HTTR safety tests. Structures, systems, and components that are subject to protection have been defined, and countermeasures to manage internal and external hazards that affect safety functions have been strengthened. Additionally, measures are in place to control accidents that may cause large amounts of radioactive material to be released, as a beyond design based accident. The Nuclear Regulatory Commission rigorously and appropriately reviewed this approach for compliance with the new regulatory requirements. After nine amendments, the application to modify the HTTR's installation license that was submitted in November 2014 was approved in June 2020. This response shows that facilities can reasonably be designed to meet the enhanced regulatory requirements, if they reflect the characteristics of HTGRs. We believe that we have established a reference for future development of HTGR.

Journal Articles

Reduction of the source term of an assumed criticality accident in a fuel fabrication facility with solution system

Fukaya, Yuji; Goto, Minoru

Annals of Nuclear Energy, 164, p.108617_1 - 108617_6, 2021/12

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

A reasonable source term of a hypothetical criticality accident for fuel fabrication facility with solution system has been proposed. The public exposure must not exceed the limitation of 5 mSv during an accident. Then, we proposed the reasonable source term of the first burst peak due to the hydrogen gas generation by radiation decomposition of water. With the criticality control system composed of the Criticality Accident Alarm System (CAAS) and soluble neutron absorber, safety is ensured by the reduced fission number. We confirmed the effect by environmental impact assessment during a criticality accident by using site condition of a fuel fabrication facility in Tokai-mura, Japan. As a result, the public exposure is reduced at a site boundary from 68 mSv to 0.6 mSv under the current regulatory guideline.

Journal Articles

Proposal of evaluation method of graphite incombustibility

Hamamoto, Shimpei; Ohashi, Hirofumi; Iigaki, Kazuhiko; Shimazaki, Yosuke; Ono, Masato; Shimizu, Atsushi; Ishitsuka, Etsuo

Proceedings of 2021 International Congress on Advances in Nuclear Power Plants (ICAPP 2021) (USB Flash Drive), 6 Pages, 2021/10

Since the HTGR has a large amount of graphite material in the core, it is necessary to assume an accident in which the reactor pressure boundary is damaged and air flows into the core. It is important to state that at the time of this accident, graphite does not burn and the accident does not develop due to the heat of oxidation reaction. Therefore, in this study, in order to evaluate the combustibility of graphite materials, we propose a method to compare the calorific value and heat removal amount of the material. When calculating the calorific value, the structural material of HTTR, a high-temperature gas reactor in Japan, was used as a reference. The amount of air in contact with the structural material is a value determined from the chimney effect. The amount of heat release is the sum of convection and radiation. As a result of comparing the heat generation amount with the heat removal amount, it was shown that the heat release amount was always larger than the heat generation amount. This result shows that the graphite material does not depend on the state at the time of the air inflow accident, the temperature decreases and does not burn. It is important to clearly explain the non-flammability of graphite materials when deciding how to deal with severe accidents in HTGRs. This quantitative evaluation method based on a simple theory is considered useful.

Journal Articles

Contribution to carbon neutral by HTGR

Nishihara, Tetsuo

Genshiryoku No Shinchoryu, 2-2, p.30 - 36, 2021/08

JAEA is conducting the research and development on HTGR and hydrogen production using it. We are aiming to realize a system that uses HTGR as a heat source and produces a large amount of hydrogen, which is a clean energy in the future, at low cost without carbon dioxide emission. This system can greatly contribute to the realization of carbon neutral stated by Japanese Government. This report describes the current status of research and development of HTGR including the position of HTGR in the national policy and the current status in the overseas.

546 (Records 1-20 displayed on this page)